A seamless, extended DG approach for hyperbolic-parabolic problems on unbounded domains

12/10/2020
by   Federico Vismara, et al.
0

We propose and analyze a seamless extended Discontinuous Galerkin (DG) discretization of hyperbolic-parabolic equations on semi-infinite domains. The semi-infinite half line is split into a finite subdomain where the model uses a standard polynomial basis, and a semi-unbounded subdomain where scaled Laguerre functions are employed as basis and test functions. Numerical fluxes enable the coupling at the interface between the two subdomains in the same way as standard single domain DG interelement fluxes. A novel linear analysis on the extended DG model yields stability constraints on the finite subdomain grid size that get tighter for increasing values of the Péclet number. Errors due to the use of different sets of basis functions on different portions of the domain are negligible, as highlighted in numerical experiments with the linear advection-diffusion and viscous Burgers' equations. With an added damping term on the semi-infinite subdomain, the extended framework is able to efficiently simulate absorbing boundary conditions without additional conditions at the interface. A few modes in the semi-infinite subdomain are found to suffice to deal with outgoing single wave and wave train signals, thus providing an appealing model for fluid flow simulations in unbounded regions.

READ FULL TEXT

page 1

page 2

page 3

page 4

03/02/2021

An energy-based summation-by-parts finite difference method for the wave equation in second order form

We develop an energy-based finite difference method for the wave equatio...
09/03/2020

Multiscale dimension reduction for flow and transport problems in thin domain with reactive boundaries

In this paper, we consider flow and transport problems in thin domains. ...
06/10/2017

A fully semi-Lagrangian discretization for the 2D Navier--Stokes equations in the vorticity--streamfunction formulation

A numerical method for the two-dimensional, incompressible Navier--Stoke...
06/29/2020

A high-order discontinuous Galerkin method for the poro-elasto-acoustic problem on polygonal and polyhedral grids

The aim of this work is to introduce and analyze a finite element discon...
01/11/2022

The perfectly matched layer (PML) for hyperbolic wave propagation problems: A review

It is well-known that reliable and efficient domain truncation is crucia...
10/11/2020

Discontinuous Galerkin methods for a dispersive wave hydro-sediment-morphodynamic model

A dispersive wave hydro-sediment-morphodynamic model developed by comple...