A Robust Localization Solution for an Uncrewed Ground Vehicle in Unstructured Outdoor GNSS-Denied Environments

09/05/2023
by   W. Jacob Wagner, et al.
0

This work addresses the challenge of developing a localization system for an uncrewed ground vehicle (UGV) operating autonomously in unstructured outdoor Global Navigation Satellite System (GNSS)-denied environments. The goal is to enable accurate mapping and long-range navigation with practical applications in domains such as autonomous construction, military engineering missions, and exploration of non-Earth planets. The proposed system - Terrain-Referenced Assured Engineer Localization System (TRAELS) - integrates pose estimates produced by two complementary terrain referenced navigation (TRN) methods with wheel odometry and inertial measurement unit (IMU) measurements using an Extended Kalman Filter (EKF). Unlike simultaneous localization and mapping (SLAM) systems that require loop closures, the described approach maintains accuracy over long distances and one-way missions without the need to revisit previous positions. Evaluation of TRAELS is performed across a range of environments. In regions where a combination of distinctive geometric and ground surface features are present, the developed TRN methods are leveraged by TRAELS to consistently achieve an absolute trajectory error of less than 3.0 m. The approach is also shown to be capable of recovering from large accumulated drift when traversing feature-sparse areas, which is essential in ensuring robust performance of the system across a wide variety of challenging GNSS-denied environments. Overall, the effectiveness of the system in providing precise localization and mapping capabilities in challenging GNSS-denied environments is demonstrated and an analysis is performed leading to insights for improving TRN approaches for UGVs.

READ FULL TEXT

page 1

page 3

page 4

page 7

page 8

page 10

page 12

page 13

research
03/10/2023

Monocular Simultaneous Localization and Mapping using Ground Textures

Recent work has shown impressive localization performance using only ima...
research
11/22/2019

A GNC Architecture for Planetary Rovers with Autonomous Navigation Capabilities

This paper proposes a Guidance, Navigation, and Control (GNC) architectu...
research
12/29/2022

An Enhanced LiDAR-Inertial SLAM System for Robotics Localization and Mapping

The LiDAR and inertial sensors based localization and mapping are of gre...
research
04/29/2021

Accurate outdoor ground truth based on total stations

In robotics, accurate ground-truth position fostered the development of ...
research
04/08/2023

Sky-GVINS: a Sky-segmentation Aided GNSS-Visual-Inertial System for Robust Navigation in Urban Canyons

Integrating Global Navigation Satellite Systems (GNSS) in Simultaneous L...
research
03/03/2020

LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of Perceptually-Degraded Subterranean Environments

Simultaneous Localization and Mapping (SLAM) in large-scale, unknown, an...
research
01/03/2023

LunarNav: Crater-based Localization for Long-range Autonomous Lunar Rover Navigation

The Artemis program requires robotic and crewed lunar rovers for resourc...

Please sign up or login with your details

Forgot password? Click here to reset