A Riemannian Mean Field Formulation for Two-layer Neural Networks with Batch Normalization

10/17/2021
by   Chao Ma, et al.
19

The training dynamics of two-layer neural networks with batch normalization (BN) is studied. It is written as the training dynamics of a neural network without BN on a Riemannian manifold. Therefore, we identify BN's effect of changing the metric in the parameter space. Later, the infinite-width limit of the two-layer neural networks with BN is considered, and a mean-field formulation is derived for the training dynamics. The training dynamics of the mean-field formulation is shown to be the Wasserstein gradient flow on the manifold. Theoretical analysis are provided on the well-posedness and convergence of the Wasserstein gradient flow.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro