A revisited branch-and-cut algorithm for large-scale orienteering problems
The orienteering problem is a route optimization problem which consists in finding a simple cycle that maximizes the total collected profit subject to a maximum distance limitation. In the last few decades, the occurrence of this problem in real-life applications has boosted the development of many heuristic algorithms to solve it. However, during the same period, not much research has been devoted to the field of exact algorithms for the orienteering problem. The aim of this work is to develop an exact method which is able to obtain optimality certification in a wider set of instances than with previous methods, or to improve the lower and upper bounds in its disability. We propose a revisited version of the branch-and-cut algorithm for the orienteering problem which includes new contributions in the separation algorithms of inequalities stemming from the cycle problem, in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of the problem. Our proposal is compared to three state-of-the-art algorithms on 258 benchmark instances with up to 7397 nodes. The computational experiments show the relevance of the designed components where 18 new optima, 76 new best-known solutions and 85 new upper-bound values were obtained.
READ FULL TEXT