A review on Deep Reinforcement Learning for Fluid Mechanics

08/12/2019 ∙ by Paul Garnier, et al. ∙ 0

Deep reinforcement learning (DRL) has recently been adopted in a wide range of physics and engineering domains for its ability to solve decision-making problems that were previously out of reach due to a combination of non-linearity and high dimensionality. In the last few years, it has spread in the field of computational mechanics, and particularly in fluid dynamics, with recent applications in flow control and shape optimization. In this work, we conduct a detailed review of existing DRL applications to fluid mechanics problems. In addition, we present recent results that further illustrate the potential of DRL in Fluid Mechanics. The coupling methods used in each case are covered, detailing their advantages and limitations. Our review also focuses on the comparison with classical methods for optimal control and optimization. Finally, several test cases are described that illustrate recent progress made in this field. The goal of this publication is to provide an understanding of DRL capabilities along with state-of-the-art applications in fluid dynamics to researchers wishing to address new problems with these methods.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 16

page 19

Code Repositories

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.