A Review, Framework and R toolkit for Exploring, Evaluating, and Comparing Visualizations

02/22/2019
by   Stephen L. France, et al.
8

This paper gives a review and synthesis of methods of evaluating dimensionality reduction techniques. Particular attention is paid to rank-order neighborhood evaluation metrics. A framework is created for exploring dimensionality reduction quality through visualization. An associated toolkit is implemented in R. The toolkit includes scatter plots, heat maps, loess smoothing, and performance lift diagrams. The overall rationale is to help researchers compare dimensionality reduction techniques and use visual insights to help select and improve techniques. Examples are given for dimensionality reduction of manifolds and for the dimensionality reduction applied to a consumer survey dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro