A residual dense vision transformer for medical image super-resolution with segmentation-based perceptual loss fine-tuning

02/22/2023
by   Jin Zhu, et al.
0

Super-resolution plays an essential role in medical imaging because it provides an alternative way to achieve high spatial resolutions and image quality with no extra acquisition costs. In the past few decades, the rapid development of deep neural networks has promoted super-resolution performance with novel network architectures, loss functions and evaluation metrics. Specifically, vision transformers dominate a broad range of computer vision tasks, but challenges still exist when applying them to low-level medical image processing tasks. This paper proposes an efficient vision transformer with residual dense connections and local feature fusion, aiming to achieve efficient single-image super-resolution (SISR) of medical modalities. Moreover, we implement a general-purpose perceptual loss with manual control for image quality improvements of desired aspects by incorporating prior knowledge of medical image segmentation. Compared with state-of-the-art methods on four public medical image datasets, the proposed method achieves the best PSNR scores of 6 modalities among seven modalities in total. It leads to an average improvement of +0.09 dB PSNR with only 38% parameters of SwinIR. On the other hand, the segmentation-based perceptual loss increases +0.14 dB PSNR on average for SOTA methods, including CNNs and vision transformers. Additionally, we conduct comprehensive ablation studies to discuss potential factors for the superior performance of vision transformers over CNNs and the impacts of network and loss function components.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset