A Reliability Study of Parallelized VNF Chaining
In this paper, we study end-to-end service reliability in Data Center Networks (DCN) with flow and Service Function Chains (SFCs) parallelism. In our approach, we consider large flows to i) be split into multiple parallel smaller sub-flows; ii) SFC along with their VNFs are replicated into at least as many VNF instances as there are sub-flows, resulting in parallel sub-SFCs; and iii) all sub-flows are distributed over multiple shortest paths and processed in parallel by parallel sub-SFCs. We study service reliability as a function of flow and SFC parallelism and placement of parallel active and backup sub-SFCs within DCN. Based on the probability theory and by considering both server and VNF failures, we analytically derive for each studied VNF placement method the probability that all sub-flows can be successfully processed by the parallelized SFC without service interruption. We evaluate the amount of backup VNFs required to protect the parallelized SFC with a certain level of service reliability. The results show that the proposed flow and SFC parallelism in DCN can significantly increase end-to-end service reliability, while reducing the amount of backup VNFs required, as compared to traditional SFCs with serial traffic flows.
READ FULL TEXT