A reinforcement learning strategy for p-adaptation in high order solvers

06/14/2023
by   David Huergo, et al.
0

Reinforcement learning (RL) has emerged as a promising approach to automating decision processes. This paper explores the application of RL techniques to optimise the polynomial order in the computational mesh when using high-order solvers. Mesh adaptation plays a crucial role in improving the efficiency of numerical simulations by improving accuracy while reducing the cost. Here, actor-critic RL models based on Proximal Policy Optimization offer a data-driven approach for agents to learn optimal mesh modifications based on evolving conditions. The paper provides a strategy for p-adaptation in high-order solvers and includes insights into the main aspects of RL-based mesh adaptation, including the formulation of appropriate reward structures and the interaction between the RL agent and the simulation environment. We discuss the impact of RL-based mesh p-adaptation on computational efficiency and accuracy. We test the RL p-adaptation strategy on a 1D inviscid Burgers' equation to demonstrate the effectiveness of the strategy. The RL strategy reduces the computational cost and improves accuracy over uniform adaptation, while minimising human intervention.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset