A Recursive Framework for Expression Recognition: From Web Images to Deep Models to Game Dataset

08/04/2016
by   Wei Li, et al.
0

In this paper, we propose a recursive framework to recognize facial expressions from images in real scenes. Unlike traditional approaches that typically focus on developing and refining algorithms for improving recognition performance on an existing dataset, we integrate three important components in a recursive manner: facial dataset generation, facial expression recognition model building, and interactive interfaces for testing and new data collection. To start with, we first create a candid-images-for-facial-expression (CIFE) dataset. We then apply a convolutional neural network (CNN) to CIFE and build a CNN model for web image expression classification. In order to increase the expression recognition accuracy, we also fine-tune the CNN model and thus obtain a better CNN facial expression recognition model. Based on the fine-tuned CNN model, we design a facial expression game engine and collect a new and more balanced dataset, GaMo. The images of this dataset are collected from the different expressions our game users make when playing the game. Finally, we evaluate the GaMo and CIFE datasets and show that our recursive framework can help build a better facial expression model for dealing with real scene facial expression tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset