A Rate-Distortion Framework for Explaining Black-box Model Decisions
We present the Rate-Distortion Explanation (RDE) framework, a mathematically well-founded method for explaining black-box model decisions. The framework is based on perturbations of the target input signal and applies to any differentiable pre-trained model such as neural networks. Our experiments demonstrate the framework's adaptability to diverse data modalities, particularly images, audio, and physical simulations of urban environments.
READ FULL TEXT