A Rate-Distortion Framework for Characterizing Semantic Information

05/10/2021 ∙ by Jiakun Liu, et al. ∙ 0

A rate-distortion problem motivated by the consideration of semantic information is formulated and solved. The starting point is to model an information source as a pair consisting of an intrinsic state which is not observable, corresponding to the semantic aspect of the source, and an extrinsic observation which is subject to lossy source coding. The proposed rate-distortion problem seeks a description of the information source, via encoding the extrinsic observation, under two distortion constraints, one for the intrinsic state and the other for the extrinsic observation. The corresponding state-observation rate-distortion function is obtained, and a few case studies of Gaussian intrinsic state estimation and binary intrinsic state classification are studied.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.