DeepAI
Log In Sign Up

A rate-compatible solution to the set reconciliation problem

11/10/2022
by   Francisco Lázaro, et al.
0

We consider a set reconciliation setting in which two parties hold similar sets which they would like to reconcile In particular, we focus on set reconciliation based on invertible Bloom lookup tables (IBLTs), a probabilistic data structure inspired by Bloom filters but allowing for more complex operations. IBLT-based set reconciliation schemes have the advantage of exhibiting a low complexity, however, the schemes available in literature are known to be far from optimal in terms of communication complexity (overhead). The inefficiency of IBLT-based set reconciliation can be attributed to two facts. First, it requires an estimate of the cardinality of the set difference between the sets, which implies an increase in overhead. Second, in order to cope with errors in the aforementioned estimation of the cardinality of the set difference, IBLT schemes in literature make a worst-case assumption and oversize the data structures, thus further increasing the overhead. In this work, we present a novel IBLT-based set reconciliation protocol that does not require estimating the cardinality of the set difference. The scheme we propose relies on what we term multi-edge-type (MET) IBLTs. The simulation results shown in this paper show that the novel scheme outperforms previous IBLT-based approaches to set reconciliation

READ FULL TEXT

page 1

page 2

page 3

page 4

07/29/2020

Space- and Computationally-Efficient Set Reconciliation via Parity Bitmap Sketch (PBS)

Set reconciliation is a fundamental algorithmic problem that arises in m...
04/08/2021

A MCMC-type simple probabilistic approach for determining optimal progressive censoring schemes

We present here a simple probabilistic approach for determining an optim...
12/04/2017

Reclaiming memory for lock-free data structures: there has to be a better way

Memory reclamation for lock-based data structures is typically easy. How...
03/03/2020

Accuracy of Difference Schemes in Electromagnetic Applications: a Trefftz Analysis

The paper examines local approximation errors of finite difference schem...
12/27/2022

Range-Based Set Reconciliation and Authenticated Set Representations

Range-based set reconciliation is a simple approach to efficiently compu...
05/16/2021

Low-Complexity PIR Using Subfield Subcodes

A major drawback of many PIR schemes is the highcomputational cost at th...