A Rank Minrelation - Majrelation Coefficient

05/09/2013
by   Patrick E. Meyer, et al.
0

Improving the detection of relevant variables using a new bivariate measure could importantly impact variable selection and large network inference methods. In this paper, we propose a new statistical coefficient that we call the rank minrelation coefficient. We define a minrelation of X to Y (or equivalently a majrelation of Y to X) as a measure that estimate p(Y > X) when X and Y are continuous random variables. The approach is similar to Lin's concordance coefficient that rather focuses on estimating p(X = Y). In other words, if a variable X exhibits a minrelation to Y then, as X increases, Y is likely to increases too. However, on the contrary to concordance or correlation, the minrelation is not symmetric. More explicitly, if X decreases, little can be said on Y values (except that the uncertainty on Y actually increases). In this paper, we formally define this new kind of bivariate dependencies and propose a new statistical coefficient in order to detect those dependencies. We show through several key examples that this new coefficient has many interesting properties in order to select relevant variables, in particular when compared to correlation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro