A Puzzle of Proportions: Two Popular Bayesian Tests Can Yield Dramatically Different Conclusions

08/10/2021
by   Fabian Dablander, et al.
0

Testing the equality of two proportions is a common procedure in science, especially in medicine and public health. In these domains it is crucial to be able to quantify evidence for the absence of a treatment effect. Bayesian hypothesis testing by means of the Bayes factor provides one avenue to do so, requiring the specification of prior distributions for parameters. The most popular analysis approach views the comparison of proportions from a contingency table perspective, assigning prior distributions directly to the two proportions. Another, less popular approach views the problem from a logistic regression perspective, assigning prior distributions to logit transformed parameters. Reanalyzing 39 null results from the New England Journal of Medicine with both approaches, we find that they can lead to markedly different conclusions, especially when the observed proportions are at the extremes (i.e., very low or very high). We explain these stark differences and provide recommendations for researchers interested in testing the equality of two proportions and users of Bayes factors more generally.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset