A Proximal Distance Algorithm for Likelihood-Based Sparse Covariance Estimation

09/09/2021
by   Jason Xu, et al.
0

This paper addresses the task of estimating a covariance matrix under a patternless sparsity assumption. In contrast to existing approaches based on thresholding or shrinkage penalties, we propose a likelihood-based method that regularizes the distance from the covariance estimate to a symmetric sparsity set. This formulation avoids unwanted shrinkage induced by more common norm penalties and enables optimization of the resulting non-convex objective by solving a sequence of smooth, unconstrained subproblems. These subproblems are generated and solved via the proximal distance version of the majorization-minimization principle. The resulting algorithm executes rapidly, gracefully handles settings where the number of parameters exceeds the number of cases, yields a positive definite solution, and enjoys desirable convergence properties. Empirically, we demonstrate that our approach outperforms competing methods by several metrics across a suite of simulated experiments. Its merits are illustrated on an international migration dataset and a classic case study on flow cytometry. Our findings suggest that the marginal and conditional dependency networks for the cell signalling data are more similar than previously concluded.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset