A Proximal Algorithm for Sampling from Non-smooth Potentials
Markov chain Monte Carlo (MCMC) is an effective and dominant method to sample from high-dimensional complex distributions. Yet, most existing MCMC methods are only applicable to settings with smooth potentials (log-densities). In this work, we examine sampling problems with non-smooth potentials. We propose a novel MCMC algorithm for sampling from non-smooth potentials. We provide a non-asymptotical analysis of our algorithm and establish a polynomial-time complexity Õ(dε^-1) to obtain ε total variation distance to the target density, better than all existing results under the same assumptions. Our method is based on the proximal bundle method and an alternating sampling framework. This framework requires the so-called restricted Gaussian oracle, which can be viewed as a sampling counterpart of the proximal mapping in convex optimization. One key contribution of this work is a fast algorithm that realizes the restricted Gaussian oracle for any convex non-smooth potential with bounded Lipschitz constant.
READ FULL TEXT