A Proof of Orthogonal Double Machine Learning with Z-Estimators
We consider two stage estimation with a non-parametric first stage and a generalized method of moments second stage, in a simpler setting than (Chernozhukov et al. 2016). We give an alternative proof of the theorem given in (Chernozhukov et al. 2016) that orthogonal second stage moments, sample splitting and n^1/4-consistency of the first stage, imply √(n)-consistency and asymptotic normality of second stage estimates. Our proof is for a variant of their estimator, which is based on the empirical version of the moment condition (Z-estimator), rather than a minimization of a norm of the empirical vector of moments (M-estimator). This note is meant primarily for expository purposes, rather than as a new technical contribution.
READ FULL TEXT