A probability theoretic approach to drifting data in continuous time domains

12/04/2019 ∙ by Fabian Hinder, et al. ∙ 0

The notion of drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time. Albeit many attempts were made to deal with drift, formal notions of drift are application-dependent and formulated in various degrees of abstraction and mathematical coherence. In this contribution, we provide a probability theoretical framework, that allows a formalization of drift in continuous time, which subsumes popular notions of drift. In particular, it sheds some light on common practice such as change-point detection or machine learning methodologies in the presence of drift. It gives rise to a new characterization of drift in terms of stochastic dependency between data and time. This particularly intuitive formalization enables us to design a new, efficient drift detection method. Further, it induces a technology, to decompose observed data into a drifting and a non-drifting part.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.