A Probabilistic Reasoning Environment

03/27/2013 ∙ by Kathryn Blackmond Laskey, et al. ∙ 0

A framework is presented for a computational theory of probabilistic argument. The Probabilistic Reasoning Environment encodes knowledge at three levels. At the deepest level are a set of schemata encoding the system's domain knowledge. This knowledge is used to build a set of second-level arguments, which are structured for efficient recapture of the knowledge used to construct them. Finally, at the top level is a Bayesian network constructed from the arguments. The system is designed to facilitate not just propagation of beliefs and assimilation of evidence, but also the dynamic process of constructing a belief network, evaluating its adequacy, and revising it when necessary.



There are no comments yet.


page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.