A Probabilistic Approach to Neural Network Pruning

05/20/2021
by   Xin Qian, et al.
0

Neural network pruning techniques reduce the number of parameters without compromising predicting ability of a network. Many algorithms have been developed for pruning both over-parameterized fully-connected networks (FCNs) and convolutional neural networks (CNNs), but analytical studies of capabilities and compression ratios of such pruned sub-networks are lacking. We theoretically study the performance of two pruning techniques (random and magnitude-based) on FCNs and CNNs. Given a target network whose weights are independently sampled from appropriate distributions, we provide a universal approach to bound the gap between a pruned and the target network in a probabilistic sense. The results establish that there exist pruned networks with expressive power within any specified bound from the target network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset