A priori guarantees of finite-time convergence for Deep Neural Networks

09/16/2020 ∙ by Anushree Rankawat, et al. ∙ 0

In this paper, we perform Lyapunov based analysis of the loss function to derive an a priori upper bound on the settling time of deep neural networks. While previous studies have attempted to understand deep learning using control theory framework, there is limited work on a priori finite time convergence analysis. Drawing from the advances in analysis of finite-time control of non-linear systems, we provide a priori guarantees of finite-time convergence in a deterministic control theoretic setting. We formulate the supervised learning framework as a control problem where weights of the network are control inputs and learning translates into a tracking problem. An analytical formula for finite-time upper bound on settling time is computed a priori under the assumptions of boundedness of input. Finally, we prove the robustness and sensitivity of the loss function against input perturbations.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.