A Primer on Pretrained Multilingual Language Models

07/01/2021 ∙ by Sumanth Doddapaneni, et al. ∙ 4

Multilingual Language Models (MLLMs) such as mBERT, XLM, XLM-R, etc. have emerged as a viable option for bringing the power of pretraining to a large number of languages. Given their success in zero shot transfer learning, there has emerged a large body of work in (i) building bigger MLLMs covering a large number of languages (ii) creating exhaustive benchmarks covering a wider variety of tasks and languages for evaluating MLLMs (iii) analysing the performance of MLLMs on monolingual, zero shot crosslingual and bilingual tasks (iv) understanding the universal language patterns (if any) learnt by MLLMs and (v) augmenting the (often) limited capacity of MLLMs to improve their performance on seen or even unseen languages. In this survey, we review the existing literature covering the above broad areas of research pertaining to MLLMs. Based on our survey, we recommend some promising directions of future research.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.