A Preliminary Exploration of Floating Point Grammatical Evolution
Current GP frameworks are highly effective on a range of real and simulated benchmarks. However, due to the high dimensionality of the genotypes for GP, the task of visualising the fitness landscape for GP search can be difficult. This paper describes a new framework: Floating Point Grammatical Evolution (FP-GE) which uses a single floating point genotype to encode an individual program. This encoding permits easier visualisation of the fitness landscape arbitrary problems by providing a way to map fitness against a single dimension. The new framework also makes it trivially easy to apply continuous search algorithms, such as Differential Evolution, to the search problem. In this work, the FP-GE framework is tested against several regression problems, visualising the search landscape for these and comparing different search meta-heuristics.
READ FULL TEXT