DeepAI AI Chat
Log In Sign Up

A Practical Framework for Preventing Distracted Pedestrian-related Incidents using Wrist Wearables

Distracted pedestrians, like distracted drivers, are an increasingly dangerous threat and precursors to pedestrian accidents in urban communities, often resulting in grave injuries and fatalities. Mitigating such hazards to pedestrian safety requires employment of pedestrian safety systems and applications that are effective in detecting them. Designing such frameworks is possible with the availability of sophisticated mobile and wearable devices equipped with high-precision on-board sensors capable of capturing fine-grained user movements and context, especially distracted activities. However, the key technical challenge is accurate recognition of distractions with minimal resources in real-time given the computation and communication limitations of these devices. Several recently published works improve distracted pedestrian safety by leveraging on complex activity recognition frameworks using mobile and wearable sensors to detect pedestrian distractions. Their primary focus, however, was to achieve high detection accuracy, and therefore most designs are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system, we design an efficient and real-time pedestrian distraction detection technique that overcomes some of these shortcomings. We demonstrate its practicality by implementing prototypes on commercially-available mobile and wearable devices and evaluating them using data collected from participants in realistic pedestrian experiments. Using these evaluations, we show that our technique achieves a favorable balance between computational efficiency, detection accuracy and energy consumption compared to some other techniques in the literature.


page 1

page 8


Towards a Practical Pedestrian Distraction Detection Framework using Wearables

Pedestrian safety continues to be a significant concern in urban communi...

Vision-based Pedestrian Alert Safety System (PASS) for Signalized Intersections

Although Vehicle-to-Pedestrian (V2P) communication can significantly imp...

Real-time Human Activity Recognition Using Conditionally Parametrized Convolutions on Mobile and Wearable Devices

Recently, deep learning has represented an important research trend in h...

Real-time Pedestrian Detection Approach with an Efficient Data Communication Bandwidth Strategy

Vehicle-to-Pedestrian (V2P) communication can significantly improve pede...

A streaming feature-based compression method for data from instrumented infrastructure

An increasing amount of civil engineering applications are utilising dat...

Coupling Microscopic Mobility and Mobile Network Emulation for Pedestrian Communication Applications

Network emulation is a well-established method for demonstrating and tes...

Enabling WiFi P2P-Based Pedestrian Safety App

Recent studies reported a significant increase in the number of accident...