A-PixelHop: A Green, Robust and Explainable Fake-Image Detector

11/07/2021
by   Yao Zhu, et al.
0

A novel method for detecting CNN-generated images, called Attentive PixelHop (or A-PixelHop), is proposed in this work. It has three advantages: 1) low computational complexity and a small model size, 2) high detection performance against a wide range of generative models, and 3) mathematical transparency. A-PixelHop is designed under the assumption that it is difficult to synthesize high-quality, high-frequency components in local regions. It contains four building modules: 1) selecting edge/texture blocks that contain significant high-frequency components, 2) applying multiple filter banks to them to obtain rich sets of spatial-spectral responses as features, 3) feeding features to multiple binary classifiers to obtain a set of soft decisions, 4) developing an effective ensemble scheme to fuse the soft decisions into the final decision. Experimental results show that A-PixelHop outperforms state-of-the-art methods in detecting CycleGAN-generated images. Furthermore, it can generalize well to unseen generative models and datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro