A Physical-World Adversarial Attack Against 3D Face Recognition

05/26/2022
by   Yanjie Li, et al.
0

3D face recognition systems have been widely employed in intelligent terminals, among which structured light imaging is a common method to measure the 3D shape. However, this method could be easily attacked, leading to inaccurate 3D face recognition. In this paper, we propose a novel, physically-achievable attack on the fringe structured light system, named structured light attack. The attack utilizes a projector to project optical adversarial fringes on faces to generate point clouds with well-designed noises. We firstly propose a 3D transform-invariant loss function to enhance the robustness of 3D adversarial examples in the physical-world attack. Then we reverse the 3D adversarial examples to the projector's input to place noises on phase-shift images, which models the process of structured light imaging. A real-world structured light system is constructed for the attack and several state-of-the-art 3D face recognition neural networks are tested. Experiments show that our method can attack the physical system successfully and only needs minor modifications of projected images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset