A personal discussion on conservation, and how to formulate it
Since the celebrated theorem of Lax and Wendroff, we know a necessary condition that any numerical scheme for hyperbolic problem should satisfy: it should be written in flux form. A variant can also be formulated for the entropy. Even though some schemes, as for example those using continuous finite element, do not formally cast into this framework, it is a very convenient one. In this paper, we revisit this, introduce a different notion of local conservation which contains the previous one in one space dimension, and explore its consequences. This gives a more flexible framework that allows to get, systematically, entropy stable schemes, entropy dissipative ones, or accomodate more constraints. In particular, we can show that continuous finite element method can be rewritten in the finite volume framework, and all the quantities involved are explicitly computable. We end by presenting the only counter example we are aware of, i.e a scheme that seems not to be rewritten as a finite volume scheme.
READ FULL TEXT