A Particle Swarm Optimization hyper-heuristic for the Dynamic Vehicle Routing Problem
This paper presents a method for choosing a Particle Swarm Optimization based optimizer for the Dynamic Vehicle Routing Problem on the basis of the initially available data of a given problem instance. The optimization algorithm is chosen on the basis of a prediction made by a linear model trained on that data and the relative results obtained by the optimization algorithms. The achieved results suggest that such a model can be used in a hyper-heuristic approach as it improved the average results, obtained on the set of benchmark instances, by choosing the appropriate algorithm in 82 multi-swarm Particle Swarm Optimization based algorithms for solving the Dynamic Vehicle Routing Problem are used as the basic optimization algorithms: Khouadjia's et al. Multi-Environmental Multi-Swarm Optimizer and authors' 2–Phase Multiswarm Particle Swarm Optimization.
READ FULL TEXT