A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum
We propose a new set of rotationally and translationally invariant features for image or pattern recognition and classification. The new features are cubic polynomials in the pixel intensities and provide a richer representation of the original image than most existing systems of invariants. Our construction is based on the generalization of the concept of bispectrum to the three-dimensional rotation group SO(3), and a projection of the image onto the sphere.
READ FULL TEXT