A Novel Regularization Approach to Fair ML

08/13/2022
by   Norman Matloff, et al.
10

A number of methods have been introduced for the fair ML issue, most of them complex and many of them very specific to the underlying ML moethodology. Here we introduce a new approach that is simple, easily explained, and potentially applicable to a number of standard ML algorithms. Explicitly Deweighted Features (EDF) reduces the impact of each feature among the proxies of sensitive variables, allowing a different amount of deweighting applied to each such feature. The user specifies the deweighting hyperparameters, to achieve a given point in the Utility/Fairness tradeoff spectrum. We also introduce a new, simple criterion for evaluating the degree of protection afforded by any fair ML method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset