A Novel Method for Inference of Acyclic Chemical Compounds with Bounded Branch-height Based on Artificial Neural Networks and Integer Programming

09/21/2020 ∙ by Naveed Ahmed Azam, et al. ∙ 0

Analysis of chemical graphs is a major research topic in computational molecular biology due to its potential applications to drug design. One approach is inverse quantitative structure activity/property relationship (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical activities/properties. Recently, a framework has been proposed for inverse QSAR/QSPR using artificial neural networks (ANN) and mixed integer linear programming (MILP). This method consists of a prediction phase and an inverse prediction phase. In the first phase, a feature vector f(G) of a chemical graph G is introduced and a prediction function ψ on a chemical property π is constructed with an ANN. In the second phase, given a target value y^* of property π, a feature vector x^* is inferred by solving an MILP formulated from the trained ANN so that ψ(x^*) is close to y^* and then a set of chemical structures G^* such that f(G^*)= x^* is enumerated by a graph search algorithm. The framework has been applied to the case of chemical compounds with cycle index up to 2. The computational results conducted on instances with n non-hydrogen atoms show that a feature vector x^* can be inferred for up to around n=40 whereas graphs G^* can be enumerated for up to n=15. When applied to the case of chemical acyclic graphs, the maximum computable diameter of G^* was around up to around 8. We introduce a new characterization of graph structure, "branch-height," based on which an MILP formulation and a graph search algorithm are designed for chemical acyclic graphs. The results of computational experiments using properties such as octanol/water partition coefficient, boiling point and heat of combustion suggest that the proposed method can infer chemical acyclic graphs G^* with n=50 and diameter 30.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 9

page 13

page 14

page 17

page 19

page 21

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.