A Novel Meta-Heuristic Optimization Algorithm Inspired by the Spread of Viruses
According to the no-free-lunch theorem, there is no single meta-heuristic algorithm that can optimally solve all optimization problems. This motivates many researchers to continuously develop new optimization algorithms. In this paper, a novel nature-inspired meta-heuristic optimization algorithm called virus spread optimization (VSO) is proposed. VSO loosely mimics the spread of viruses among hosts, and can be effectively applied to solving many challenging and continuous optimization problems. We devise a new representation scheme and viral operations that are radically different from previously proposed virus-based optimization algorithms. First, the viral RNA of each host in VSO denotes a potential solution for which different viral operations will help to diversify the searching strategies in order to largely enhance the solution quality. In addition, an imported infection mechanism, inheriting the searched optima from another colony, is introduced to possibly avoid the prematuration of any potential solution in solving complex problems. VSO has an excellent capability to conduct adaptive neighborhood searches around the discovered optima for achieving better solutions. Furthermore, with a flexible infection mechanism, VSO can quickly escape from local optima. To clearly demonstrate both its effectiveness and efficiency, VSO is critically evaluated on a series of well-known benchmark functions. Moreover, VSO is validated on its applicability through two real-world examples including the financial portfolio optimization and optimization of hyper-parameters of support vector machines for classification problems. The results show that VSO has attained superior performance in terms of solution fitness, convergence rate, scalability, reliability, and flexibility when compared to those results of the conventional as well as state-of-the-art meta-heuristic optimization algorithms.
READ FULL TEXT