A novel approach for estimating functions in the multivariate setting based on an adaptive knot selection for B-splines with an application to a chemical system used in geoscie

06/01/2023
by   Mary E. Savino, et al.
0

In this paper, we will outline a novel data-driven method for estimating functions in a multivariate nonparametric regression model based on an adaptive knot selection for B-splines. The underlying idea of our approach for selecting knots is to apply the generalized lasso, since the knots of the B-spline basis can be seen as changes in the derivatives of the function to be estimated. This method was then extended to functions depending on several variables by processing each dimension independently, thus reducing the problem to a univariate setting. The regularization parameters were chosen by means of a criterion based on EBIC. The nonparametric estimator was obtained using a multivariate B-spline regression with the corresponding selected knots. Our procedure was validated through numerical experiments by varying the number of observations and the level of noise to investigate its robustness. The influence of observation sampling was also assessed and our method was applied to a chemical system commonly used in geoscience. For each different framework considered in this paper, our approach performed better than state-of-the-art methods. Our completely data-driven method is implemented in the glober R package which is available on the Comprehensive R Archive Network (CRAN).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset