A note on concentration inequality for vector-valued martingales with weak exponential-type tails

09/06/2018
by   Chris Junchi Li, et al.
0

We present novel martingale concentration inequalities for martingale differences with finite Orlicz-ψ_α norms. Such martingale differences with weak exponential-type tails scatters in many statistical applications and can be heavier than sub-exponential distributions. In the case of one dimension, we prove in general that for a sequence of scalar-valued supermartingale difference, the tail bound depends solely on the sum of squared Orlicz-ψ_α norms instead of the maximal Orlicz-ψ_α norm, generalizing the results of Lesigne & Volný (2001) and Fan et al. (2012). In the multidimensional case, using a dimension reduction lemma proposed by Kallenberg & Sztencel (1991) we show that essentially the same concentration tail bound holds for vector-valued martingale difference sequences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset