A Note on Clustering Aggregation
We consider the clustering aggregation problem in which we are given a set of clusterings and want to find an aggregated clustering which minimizes the sum of mismatches to the input clusterings. In the binary case (each clustering is a bipartition) this problem was known to be NP-hard under Turing reduction. We strengthen this result by providing a polynomial-time many-one reduction. Our result also implies that no 2^o(n)· |I|^O(1)-time algorithm exists for any clustering instance I with n elements, unless the Exponential Time Hypothesis fails. On the positive side, we show that the problem is fixed-parameter tractable with respect to the number of input clusterings.
READ FULL TEXT