A normal approximation for joint frequency estimatation under Local Differential Privacy

05/23/2022
by   Thomas Carette, et al.
0

In the recent years, Local Differential Privacy (LDP) has been one of the corner stone of privacy preserving data analysis. However, many challenges still opposes its widespread application. One of these problems is the scalability of LDP to high dimensional data, in particular for estimating joint-distributions. In this paper, we develop an approximate estimator for frequency joint-distribution estimation under so-called pure LDP protocols.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro