A Nonparametric Adaptive Nonlinear Statistical Filter

11/03/2014
by   Michael Busch, et al.
0

We use statistical learning methods to construct an adaptive state estimator for nonlinear stochastic systems. Optimal state estimation, in the form of a Kalman filter, requires knowledge of the system's process and measurement uncertainty. We propose that these uncertainties can be estimated from (conditioned on) past observed data, and without making any assumptions of the system's prior distribution. The system's prior distribution at each time step is constructed from an ensemble of least-squares estimates on sub-sampled sets of the data via jackknife sampling. As new data is acquired, the state estimates, process uncertainty, and measurement uncertainty are updated accordingly, as described in this manuscript.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro