A Non-Markovian Model to Assess Contact Tracing for the Containment of COVID-19

11/05/2021
by   Aram Vajdi, et al.
0

COVID-19 remains a challenging global threat with ongoing waves of infections and clinical disease which have resulted millions of deaths and an enormous strain on health systems worldwide. Effective vaccines have been developed for the SARS-CoV-2 virus and administered to billions of people; however, the virus continues to circulate and evolve into new variants for which vaccines may ultimately be less effective. Non-pharmaceutical interventions, such as social distancing, wearing face coverings, and contact tracing, remain important tools, especially at the onset of an outbreak. In this paper, we assess the effectiveness of contact tracing using a non-Markovian, network-based mathematical model. To improve the reliability of the novel model, empirically determined distributions were incorporated for the transition time of model state pairs, such as from exposed to infected states. The first-order closure approximation was used to derive an expression for the epidemic threshold, which is dependent on the number of close contacts. Using survey contact data collected during the 2020 fall academic semester from a university population, we determined that even four to five contacts are sufficient to maintain viral transmission. Additionally, our model reveals that contact tracing can be an effective outbreak mitigation measure by reducing the epidemic size by more than three-fold. Increasing the reliability of epidemic models is critical for accurate public health planning and use as decision support tools. Moving toward more accurate non-Markovian models built upon empirical data is important.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro