A Node Elimination Algorithm for Cubature of High-Dimensional Polytopes

07/21/2022
by   Arkadijs Slobodkins, et al.
0

Node elimination is a numerical approach to obtain cubature rules for the approximation of multivariate integrals. Beginning with a known cubature rule, nodes are selected for elimination, and a new, more efficient rule is constructed by iteratively solving the moment equations. This paper introduces a new criterion for selecting which nodes to eliminate that is based on a linearization of the moment equation. In addition, a penalized iterative solver is introduced, that ensures that weights are positive and nodes are inside the integration domain. A strategy for constructing an initial quadrature rule for various polytopes in several space dimensions is described. High efficiency rules are presented for two, three and four dimensional polytopes. The new rules are compared with rules that are obtained by combining tensor products of one dimensional quadrature rules and domain transformations, as well as with known analytically constructed cubature rules.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro