A new width parameter of graphs based on edge cuts: α-edge-crossing width

02/09/2023
by   Yeonsu Chang, et al.
0

We introduce graph width parameters, called α-edge-crossing width and edge-crossing width. These are defined in terms of the number of edges crossing a bag of a tree-cut decomposition. They are motivated by edge-cut width, recently introduced by Brand et al. (WG 2022). We show that edge-crossing width is equivalent to the known parameter tree-partition-width. On the other hand, α-edge-crossing width is a new parameter; tree-cut width and α-edge-crossing width are incomparable, and they both lie between tree-partition-width and edge-cut width. We provide an algorithm that, for a given n-vertex graph G and integers k and α, in time 2^O((α+k)log (α+k))n^2 either outputs a tree-cut decomposition certifying that the α-edge-crossing width of G is at most 2α^2+5k or confirms that the α-edge-crossing width of G is more than k. As applications, for every fixed α, we obtain FPT algorithms for the List Coloring and Precoloring Extension problems parameterized by α-edge-crossing width. They were known to be W[1]-hard parameterized by tree-partition-width, and FPT parameterized by edge-cut width, and we close the complexity gap between these two parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset