A New Perspective on Dependence in High-Dimensional Functional/Scalar Time Series: Finite Sample Theory and Applications

04/16/2020
by   Qin Fang, et al.
0

Statistical analysis of high-dimensional functional times series arises in various applications. Under this scenario, in addition to the intrinsic infinite-dimensionality of functional data, the number of functional variables can grow with the number of serially dependent functional observations. In this paper, we focus on the theoretical analysis of relevant estimated cross-(auto)covariance terms between two multivariate functional time series or a mixture of multivariate functional and scalar time series beyond the Gaussianity assumption. We introduce a new perspective on dependence by proposing functional cross-spectral stability measure to characterize the effect of dependence on these estimated cross terms, which are essential in the estimates for additive functional linear regressions. With the proposed functional cross-spectral stability measure, we develop useful concentration inequalities for estimated cross-(auto)covariance matrix functions to accommodate more general sub-Gaussian functional linear processes and, furthermore, establish finite sample theory for relevant estimated terms under a commonly adopted functional principal component analysis framework. Using our derived non-asymptotic results, we investigate the convergence properties of the regularized estimates for two additive functional linear regression applications under sparsity assumptions including functional linear lagged regression and partially functional linear regression in the context of high-dimensional functional/scalar time series.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset