A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction

09/07/2023
by   Costanza Arico, et al.
0

A new numerical continuum one-domain approach (ODA) solver is presented for the simulation of the transfer processes between a free fluid and a porous medium. The solver is developed in the mesoscopic scale framework, where a continuous variation of the physical parameters of the porous medium (e.g., porosity and permeability) is assumed. The Navier-Stokes-Brinkman equations are solved along with the continuity equation, under the hypothesis of incompressible fluid. The porous medium is assumed to be fully saturated and can potentially be anisotropic. The domain is discretized with unstructured meshes allowing local refinements. A fractional time step procedure is applied, where one predictor and two corrector steps are solved within each time iteration. The predictor step is solved in the framework of a marching in space and time procedure, with some important numerical advantages. The two corrector steps require the solution of large linear systems, whose matrices are sparse, symmetric and positive definite, with ℳ-matrix property over Delaunay-meshes. A fast and efficient solution is obtained using a preconditioned conjugate gradient method. The discretization adopted for the two corrector steps can be regarded as a Two-Point-Flux-Approximation (TPFA) scheme, which, unlike the standard TPFA schemes, does not require the grid mesh to be 𝐊-orthogonal, (with 𝐊 the anisotropy tensor). As demonstrated with the provided test cases, the proposed scheme correctly retains the anisotropy effects within the porous medium. Furthermore, it overcomes the restrictions of existing mesoscopic scale one-domain approachs proposed in the literature.

READ FULL TEXT

page 29

page 30

page 35

research
12/27/2022

A parallel solver for fluid structure interaction problems with Lagrange multiplier

The aim of this work is to present a parallel solver for a formulation o...
research
02/12/2022

Fast and accurate domain decomposition methods for reduced fracture models with nonconforming time grids

This paper is concerned with the numerical solution of compressible flui...
research
07/02/2019

Parallel time-stepping for fluid-structure interactions

We present a parallel time-stepping method for fluid-structure interacti...
research
11/13/2021

A hybrid-mixed finite element method for single-phase Darcy flow in fractured porous media

We present a hybrid-mixed finite element method for a novel hybrid-dim...
research
12/28/2020

Four-Dimensional Elastically Deformed Simplex Space-Time Meshes for Domains with Time Variant Topology

Thinking of the flow through biological or technical valves, there is a ...
research
01/16/2020

A global-local approach for hydraulic phase-field fracture in poroelastic media

In this work, phase-field modeling of hydraulic fractures in porous medi...

Please sign up or login with your details

Forgot password? Click here to reset