A New Locally Divergence-Free Path-Conservative Central-Upwind Scheme for Ideal and Shallow Water Magnetohydrodynamics

12/06/2022
by   Alina Chertock, et al.
0

We develop a new second-order unstaggered path-conservative central-upwind (PCCU) scheme for ideal and shallow water magnetohydrodynamics (MHD) equations. The new scheme possesses several important properties: it locally preserves the divergence-free constraint, it does not rely on any (approximate) Riemann problem solver, and it robustly produces high-resolution and non-oscillatory results. The derivation of the scheme is based on the Godunov-Powell nonconservative modifications of the studied MHD systems. The local divergence-free property is enforced by augmenting the modified systems with the evolution equations for the corresponding derivatives of the magnetic field components. These derivatives are then used to design a special piecewise linear reconstruction of the magnetic field, which guarantees a non-oscillatory nature of the resulting scheme. In addition, the proposed PCCU discretization accounts for the jump of the nonconservative product terms across cell interfaces, thereby ensuring stability. We test the proposed PCCU scheme on several benchmarks for both ideal and shallow water MHD systems. The obtained numerical results illustrate the performance of the new scheme, its robustness, and its ability not only to achieve high resolution, but also preserve the positivity of computed quantities such as density, pressure, and water depth.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset