A New Approach for Measuring Sentiment Orientation based on Multi-Dimensional Vector Space

12/31/2017
by   Youngsam Kim, et al.
0

This study implements a vector space model approach to measure the sentiment orientations of words. Two representative vectors for positive/negative polarity are constructed using high-dimensional vec-tor space in both an unsupervised and a semi-supervised manner. A sentiment ori-entation value per word is determined by taking the difference between the cosine distances against the two reference vec-tors. These two conditions (unsupervised and semi-supervised) are compared against an existing unsupervised method (Turney, 2002). As a result of our experi-ment, we demonstrate that this novel ap-proach significantly outperforms the pre-vious unsupervised approach and is more practical and data efficient as well.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro