A new approach for digit recognition based on hand gesture analysis

06/27/2009 ∙ by Ahmed Ben Jmaa, et al. ∙ 0

We present in this paper a new approach for hand gesture analysis that allows digit recognition. The analysis is based on extracting a set of features from a hand image and then combining them by using an induction graph. The most important features we extract from each image are the fingers locations, their heights and the distance between each pair of fingers. Our approach consists of three steps: (i) Hand detection and localization, (ii) fingers extraction and (iii) features identification and combination to digit recognition. Each input image is assumed to contain only one person, thus we apply a fuzzy classifier to identify the skin pixels. In the finger extraction step, we attempt to remove all the hand components except the fingers, this process is based on the hand anatomy properties. The final step consists on representing histogram of the detected fingers in order to extract features that will be used for digit recognition. The approach is invariant to scale, rotation and translation of the hand. Some experiments have been undertaken to show the effectiveness of the proposed approach.



There are no comments yet.


This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.