A New Analysis for Support Recovery with Block Orthogonal Matching Pursuit

11/06/2018
by   Haifeng Li, et al.
0

Compressed Sensing (CS) is a signal processing technique which can accurately recover sparse signals from linear measurements with far fewer number of measurements than those required by the classical Shannon-Nyquist theorem. Block sparse signals, i.e., the sparse signals whose nonzero coefficients occur in few blocks, arise from many fields. Block orthogonal matching pursuit (BOMP) is a popular greedy algorithm for recovering block sparse signals due to its high efficiency and effectiveness. By fully using the block sparsity of block sparse signals, BOMP can achieve very good recovery performance. This paper proposes a sufficient condition to ensure that BOMP can exactly recover the support of block K-sparse signals under the noisy case. This condition is better than existing ones.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset