A Nearly Instance Optimal Algorithm for Top-k Ranking under the Multinomial Logit Model

07/25/2017
by   Xi Chen, et al.
0

We study the active learning problem of top-k ranking from multi-wise comparisons under the popular multinomial logit model. Our goal is to identify the top-k items with high probability by adaptively querying sets for comparisons and observing the noisy output of the most preferred item from each comparison. To achieve this goal, we design a new active ranking algorithm without using any information about the underlying items' preference scores. We also establish a matching lower bound on the sample complexity even when the set of preference scores is given to the algorithm. These two results together show that the proposed algorithm is nearly instance optimal (similar to instance optimal [FLN03], but up to polylog factors). Our work extends the existing literature on rank aggregation in three directions. First, instead of studying a static problem with fixed data, we investigate the top-k ranking problem in an active learning setting. Second, we show our algorithm is nearly instance optimal, which is a much stronger theoretical guarantee. Finally, we extend the pairwise comparison to the multi-wise comparison, which has not been fully explored in ranking literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset