A Nearest Neighbor Characterization of Lebesgue Points in Metric Measure Spaces
The property of almost every point being a Lebesgue point has proven to be crucial for the consistency of several classification algorithms based on nearest neighbors. We characterize Lebesgue points in terms of a 1-Nearest Neighbor regression algorithm for pointwise estimation, fleshing out the role played by tie-breaking rules in the corresponding convergence problem. We then give an application of our results, proving the convergence of the risk of a large class of 1-Nearest Neighbor classification algorithms in general metric spaces where almost every point is a Lebesgue point.
READ FULL TEXT