A Multimodal Late Fusion Model for E-Commerce Product Classification

08/14/2020
by   Ye Bi, et al.
0

The cataloging of product listings is a fundamental problem for most e-commerce platforms. Despite promising results obtained by unimodal-based methods, it can be expected that their performance can be further boosted by the consideration of multimodal product information. In this study, we investigated a multimodal late fusion approach based on text and image modalities to categorize e-commerce products on Rakuten. Specifically, we developed modal specific state-of-the-art deep neural networks for each input modal, and then fused them at the decision level. Experimental results on Multimodal Product Classification Task of SIGIR 2020 E-Commerce Workshop Data Challenge demonstrate the superiority and effectiveness of our proposed method compared with unimodal and other multimodal methods. Our team named pa_curis won the 1st place with a macro-F1 of 0.9144 on the final leaderboard.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro